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Tandem intramolecular silylformylatierallylsilylation of al- Scheme 1. NaH-Catalyzed Dihydrosilane Alcoholysis
kene$ (eq 1) and alkynésallows the rapid synthesis of polyol H Me™ X Z “Me Me/j # Me
fragments for polyketide/macrolide synthe’ia.an effort to expand nhj\/\ S 20 ol Na o
the scope and utility of these reactions we have investigated the R? H . oty AmoreRan, " H
substitution of Z)- and €)-crotyl groups for the allyl groups on ra R B = b R = iPr Hexane, A R‘“; N

o 4 - JRE=H; R% = A
silicon. We report herein that such substitution leads to the 1bR' = H: RZ= iPr: R® = Me Y
stereospecific incorporation of bo#nti and syn propionate units 1cR' RZ=Me R®=H 2a 90%; 2b 99%; 2¢ 85%

into the growing polyol chain, and demonstrate the power of the

methodology for the rapid assemblage of polyketide-like structures. Scheme 2. Tandem Intramolecular
Silylformylation—Crotylsilylation
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It is a unique feature of this allylsilylation chemistry that the 2aR' R= H R2= iPr 50 65%. 72:28 ds
silicon must carry two diastereotopic allyl (crotyl) groups in order 2b R' = H; R2 = j-Pr; R® = Me 3b 67%. 928 ds
to avoid the presence of an additional element of chirality at silicon. 2cR', R?=Me;R°=H 3c 65%; 937 ds

Syntheses of deis-crotylsilane and dtrans-crotylsilane were
. - Scheme 3. Tandem Intramolecular
therefore required. Although the latter has proven surprisingly gjjyiformylation—Crotylsilylation

elusive (discussed in greater detail below), the former may be Mo A e
prepared efficiently. Double Pd(P§kcatalyzed 1,4-hydrosilylation 1 50 mol% ;;L J/\ H OH
: °  SI Me. ~

H

H
of 1,3-butadiene with dichlorosilarfeand reduction of the resulting " 7 Hexane,A
dichloro-dicis-crotylsilane with LiAlH, (0.56 equiv) produced di- 2.i. 0.4 mol% Rh(acac)(CO)z, e
=]
H
MW
M Me

X
Me

cis-crotylsilane in 75% yield (eq 2). 1000psi GO, PhH, B0°C 4 g5, 8911 ds

ii. HyOy, KHFy, THF/DMF, A
Me” X Z “Me
1. 0.5 mol% Pd(PPh3)s
2 T\ + HSiCl, > »-(Si\ @
H

Ac QAc
1. As above Me. H
2.i. As above - S X
ii. ~BuyNF, THF, A M
2 LAH, THF, A 759, ‘ Me Mo ¢

3. Ac,O, Pyr. 5 52%;96:4 ds

Requiring an efficient methoo_l for the s_ilylation of the substrate ggaplished in a single tandem reaction. In every case the yield
?ICOhOlS’ we fr(])cusegl on ‘?ste:j'yt'r? hydrlosn_ane a|C°h°||§’§;"Ll3l/ a  Shown is the isolated yield of purified major diastereomer. The
de.ﬁv dreptljlrts éﬁ\ée descn N ft eh S€ ectlve. mgnoa co lOySISh O diastereoselectivities (major diastereomer: all other diastereomers)

inydrosrianes,==and we were _urt er constrame to catalysts that parallel closely those observed in the corresponding diallylsilane
would not also catalyze hydrosﬂylangn of the silyl ether pr_odﬁcts. reactions, and we therefore conclude that the crotylation event is
We therefore focuse_(_j on metgl alkox_léeQTreatrr;ent ofa mleure essentially stereospecific.
of an alcohol and dc-.is-cro.tylsnane with 20 mpl % NaH provided Both the silylation chemistry and the tandem intramolecular
a_mlxture of the desired silyl ether and the dlalkoxys_llane that was silylformylation—crotylsilylation chemistry work equally well with
highly dependent on the solvent, temperature, and time of reactlon.a”(yne substrates to produce ketocdiadnd diacetat&® in 65 and
Eventually, it was discovered that refluxing hexane allowed the 52% overall yields, respectively (Scheme 3). As above, the
sleleﬁtl\l/e mogoalcdohccglyssldr%actlon, andd undf—‘frl th(:]se C(;rl‘)dmonsdiastereoselectivities parallel closely those observed in the corre-
aico o_sla, 1 ,”an 1_ lcou he converted to silyl etheps, 2b, sponding diallylsilane reactiorfdgading to the conclusion that the
and 2_C in excellent yields _(SC eme D). ) . crotylation event is stereospecific.

With access to the desired silyl ethers secured, we investigated 5o 1 antioned above. our attempts to prepareatis crotylsilane
their p(_erfor_mance in_ the tandem intramol_ecqlar sinIformyIation have been fruitless. The most obvious proposal was to adapt the
crotylsilylation reaction (Sch_eme 2)- _S_ubjectlon of ?'Iaﬁe_’SZb’ procedure for the synthesis tons-crotyl-trichlorosilane*¢1°Even
a_nd 2cto the standa_rd regctlon conditiéried to the isolation of under harsh conditions with many different catalysts, however, we
triols 3a, 3b, and3c, in which three new stereocenters have been could not induce a successful reaction between dichlorosilane and
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chem.columbia.edu. crotyl groups would result isyn propionate units in the tandem
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intramolecular silylformylatior-allylsilylation chemistry, we syn-
thesizedtrans-crotyl-phenylsilane as shown in eq 3.

/ Me
Ph, /_/_ o
W

To avoid the creation of a mixture of diasteromers in the silane
alcoholysis reaction, we employed an achiral alcohol (eq 4). As
shown, the silylation chemistry and the tandem intramolecular
silylformylation—allylsilylation chemistry work equally well with
atrans-crotylsilane to give diob in 64% overall yield. As expected,

a synpropionate unit was obtained stereospecifically.
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We have proposed that following the silylformylation an un-
catalyzed intramolecular aldehyde allylation/crotylation proceeds
through a closed cyclic transition stdt&The unusual observation
of anti-propionate units froneis-crotyl groups and aéynpropionate
units from trans-crotyl groups was predicted by, and is fully
consistent with, this model. Thus, a chairlike arrangement of the

six reacting atoms necessitates that the alkyl chain of the aldehyde

Scheme 4. Rapid Synthesis of a Polyketide-like Fragment?

Me. Me
H OH OH >< N
Me.
Me Me 3b
Me.
Me
Required = Me OMe
Stoichiometric <Me SiHz, CO, Hy0,, NaHCO3,
Reagents: 2 Me Me

a(a) 2,2-Dimethoxypropane;H)-camphorsulfonic acid, Cil,. (b) 20
mol % NaH, dicis-crotylsilane, hexane, reflux. (c) i. 3.0 mol % Rh(acac)-
(CO), 900 psi CO, PhH, 66C; ii. H,0,, NaHCQ, THF, MeOH, reflux.
applications to the efficient synthesis of stereochemically complex
targets may be readily envisioned.
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occupy a pseudoaxial position, leading to the observed sense ofReferences

induction (eq 5).
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